numpy.zeros_like#
- numpy.zeros_like(a, dtype=None, order='K', subok=True, shape=None, *, device=None)[source]#
Return an array of zeros with the same shape and type as a given array.
- Parameters:
- aarray_like
The shape and data-type of a define these same attributes of the returned array.
- dtypedata-type, optional
Overrides the data type of the result.
- order{โCโ, โFโ, โAโ, or โKโ}, optional
Overrides the memory layout of the result. โCโ means C-order, โFโ means F-order, โAโ means โFโ if a is Fortran contiguous, โCโ otherwise. โKโ means match the layout of a as closely as possible.
- subokbool, optional.
If True, then the newly created array will use the sub-class type of a, otherwise it will be a base-class array. Defaults to True.
- shapeint or sequence of ints, optional.
Overrides the shape of the result. If order=โKโ and the number of dimensions is unchanged, will try to keep order, otherwise, order=โCโ is implied.
- devicestr, optional
The device on which to place the created array. Default: None. For Array-API interoperability only, so must be
"cpu"if passed.New in version 2.0.0.
- Returns:
- outndarray
Array of zeros with the same shape and type as a.
See also
empty_likeReturn an empty array with shape and type of input.
ones_likeReturn an array of ones with shape and type of input.
full_likeReturn a new array with shape of input filled with value.
zerosReturn a new array setting values to zero.
Examples
>>> import numpy as np >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> np.zeros_like(x) array([[0, 0, 0], [0, 0, 0]])
>>> y = np.arange(3, dtype=float) >>> y array([0., 1., 2.]) >>> np.zeros_like(y) array([0., 0., 0.])