Distplots in Python
How to make interactive Distplots in Python with Plotly.
Combined statistical representations with px.histogramΒΆ
Several representations of statistical distributions are available in plotly, such as histograms, violin plots, box plots (see the complete list here). It is also possible to combine several representations in the same plot.
For example, the plotly.express function px.histogram can add a subplot with a different statistical representation than the histogram, given by the parameter marginal. Plotly Express functions take as a first argument a tidy pandas.DataFrame.
import plotly.express as px
tips = px.data.tips()
fig = px.histogram(tips, x="total_bill", y="tip", color="sex", marginal="rug",
hover_data=tips.columns)
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.histogram(tips, x="total_bill", y="tip", color="sex",
marginal="box", # or violin, rug
hover_data=tips.columns)
fig.show()
Combined statistical representations with distplot figure factoryΒΆ
The distplot figure factory displays a combination of statistical representations of numerical data, such as histogram, kernel density estimation or normal curve, and rug plot.
Basic DistplotΒΆ
A histogram, a kde plot and a rug plot are displayed.
import plotly.figure_factory as ff
import numpy as np
x = np.random.randn(1000)
hist_data = [x]
group_labels = ['distplot'] # name of the dataset
fig = ff.create_distplot(hist_data, group_labels)
fig.show()
Plot Multiple DatasetsΒΆ
import plotly.figure_factory as ff
import numpy as np
# Add histogram data
x1 = np.random.randn(200) - 2
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 2
x4 = np.random.randn(200) + 4
# Group data together
hist_data = [x1, x2, x3, x4]
group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']
# Create distplot with custom bin_size
fig = ff.create_distplot(hist_data, group_labels, bin_size=.2)
fig.show()
Use Multiple Bin SizesΒΆ
Different bin sizes are used for the different datasets with the bin_size argument.
import plotly.figure_factory as ff
import numpy as np
# Add histogram data
x1 = np.random.randn(200)-2
x2 = np.random.randn(200)
x3 = np.random.randn(200)+2
x4 = np.random.randn(200)+4
# Group data together
hist_data = [x1, x2, x3, x4]
group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']
# Create distplot with custom bin_size
fig = ff.create_distplot(hist_data, group_labels, bin_size=[.1, .25, .5, 1])
fig.show()
Customize Rug Text, Colors & TitleΒΆ
import plotly.figure_factory as ff
import numpy as np
x1 = np.random.randn(26)
x2 = np.random.randn(26) + .5
group_labels = ['2014', '2015']
rug_text_one = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y', 'z']
rug_text_two = ['aa', 'bb', 'cc', 'dd', 'ee', 'ff', 'gg', 'hh', 'ii', 'jj',
'kk', 'll', 'mm', 'nn', 'oo', 'pp', 'qq', 'rr', 'ss', 'tt',
'uu', 'vv', 'ww', 'xx', 'yy', 'zz']
rug_text = [rug_text_one, rug_text_two] # for hover in rug plot
colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)']
# Create distplot with custom bin_size
fig = ff.create_distplot(
[x1, x2], group_labels, bin_size=.2,
rug_text=rug_text, colors=colors)
fig.update_layout(title_text='Customized Distplot')
fig.show()
Plot Normal CurveΒΆ
import plotly.figure_factory as ff
import numpy as np
x1 = np.random.randn(200)
x2 = np.random.randn(200) + 2
group_labels = ['Group 1', 'Group 2']
colors = ['slategray', 'magenta']
# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot([x1, x2], group_labels, bin_size=.5,
curve_type='normal', # override default 'kde'
colors=colors)
# Add title
fig.update_layout(title_text='Distplot with Normal Distribution')
fig.show()
Plot Only Curve and RugΒΆ
import plotly.figure_factory as ff
import numpy as np
x1 = np.random.randn(200) - 1
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 1
hist_data = [x1, x2, x3]
group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#333F44', '#37AA9C', '#94F3E4']
# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(hist_data, group_labels, show_hist=False, colors=colors)
# Add title
fig.update_layout(title_text='Curve and Rug Plot')
fig.show()
Plot Only Hist and RugΒΆ
import plotly.figure_factory as ff
import numpy as np
x1 = np.random.randn(200) - 1
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 1
hist_data = [x1, x2, x3]
group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#835AF1', '#7FA6EE', '#B8F7D4']
# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(hist_data, group_labels, colors=colors, bin_size=.25,
show_curve=False)
# Add title
fig.update_layout(title_text='Hist and Rug Plot')
fig.show()
Plot Hist and Rug with Different Bin SizesΒΆ
import plotly.figure_factory as ff
import numpy as np
x1 = np.random.randn(200) - 2
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 2
hist_data = [x1, x2, x3]
group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#393E46', '#2BCDC1', '#F66095']
fig = ff.create_distplot(hist_data, group_labels, colors=colors,
bin_size=[0.3, 0.2, 0.1], show_curve=False)
# Add title
fig.update(layout_title_text='Hist and Rug Plot')
fig.show()
Plot Only Hist and CurveΒΆ
import plotly.figure_factory as ff
import numpy as np
x1 = np.random.randn(200) - 2
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 2
hist_data = [x1, x2, x3]
group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#A56CC1', '#A6ACEC', '#63F5EF']
# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(hist_data, group_labels, colors=colors,
bin_size=.2, show_rug=False)
# Add title
fig.update_layout(title_text='Hist and Curve Plot')
fig.show()
Distplot with PandasΒΆ
import plotly.figure_factory as ff
import numpy as np
import pandas as pd
df = pd.DataFrame({'2012': np.random.randn(200),
'2013': np.random.randn(200)+1})
fig = ff.create_distplot([df[c] for c in df.columns], df.columns, bin_size=.25)
fig.show()
ReferenceΒΆ
help(ff.create_distplot)