Permalink
Cannot retrieve contributors at this time
1359 lines (1133 sloc)
31.5 KB
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
cpython/Python/pytime.c
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #include "Python.h" | |
| #include "pycore_pymath.h" // _Py_InIntegralTypeRange() | |
| #ifdef MS_WINDOWS | |
| # include <winsock2.h> // struct timeval | |
| #endif | |
| #if defined(__APPLE__) | |
| # include <mach/mach_time.h> // mach_absolute_time(), mach_timebase_info() | |
| #if defined(__APPLE__) && defined(__has_builtin) | |
| # if __has_builtin(__builtin_available) | |
| # define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *) | |
| # endif | |
| #endif | |
| #endif | |
| /* To millisecond (10^-3) */ | |
| #define SEC_TO_MS 1000 | |
| /* To microseconds (10^-6) */ | |
| #define MS_TO_US 1000 | |
| #define SEC_TO_US (SEC_TO_MS * MS_TO_US) | |
| /* To nanoseconds (10^-9) */ | |
| #define US_TO_NS 1000 | |
| #define MS_TO_NS (MS_TO_US * US_TO_NS) | |
| #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) | |
| /* Conversion from nanoseconds */ | |
| #define NS_TO_MS (1000 * 1000) | |
| #define NS_TO_US (1000) | |
| #define NS_TO_100NS (100) | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG | |
| # define PY_TIME_T_MAX LLONG_MAX | |
| # define PY_TIME_T_MIN LLONG_MIN | |
| #elif SIZEOF_TIME_T == SIZEOF_LONG | |
| # define PY_TIME_T_MAX LONG_MAX | |
| # define PY_TIME_T_MIN LONG_MIN | |
| #else | |
| # error "unsupported time_t size" | |
| #endif | |
| static void | |
| pytime_time_t_overflow(void) | |
| { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "timestamp out of range for platform time_t"); | |
| } | |
| static void | |
| pytime_overflow(void) | |
| { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "timestamp too large to convert to C _PyTime_t"); | |
| } | |
| static inline _PyTime_t | |
| pytime_from_nanoseconds(_PyTime_t t) | |
| { | |
| // _PyTime_t is a number of nanoseconds | |
| return t; | |
| } | |
| static inline _PyTime_t | |
| pytime_as_nanoseconds(_PyTime_t t) | |
| { | |
| // _PyTime_t is a number of nanoseconds: see pytime_from_nanoseconds() | |
| return t; | |
| } | |
| // Compute t1 + t2. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. | |
| static inline int | |
| pytime_add(_PyTime_t *t1, _PyTime_t t2) | |
| { | |
| if (t2 > 0 && *t1 > _PyTime_MAX - t2) { | |
| *t1 = _PyTime_MAX; | |
| return -1; | |
| } | |
| else if (t2 < 0 && *t1 < _PyTime_MIN - t2) { | |
| *t1 = _PyTime_MIN; | |
| return -1; | |
| } | |
| else { | |
| *t1 += t2; | |
| return 0; | |
| } | |
| } | |
| _PyTime_t | |
| _PyTime_Add(_PyTime_t t1, _PyTime_t t2) | |
| { | |
| (void)pytime_add(&t1, t2); | |
| return t1; | |
| } | |
| static inline int | |
| pytime_mul_check_overflow(_PyTime_t a, _PyTime_t b) | |
| { | |
| if (b != 0) { | |
| assert(b > 0); | |
| return ((a < _PyTime_MIN / b) || (_PyTime_MAX / b < a)); | |
| } | |
| else { | |
| return 0; | |
| } | |
| } | |
| // Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. | |
| static inline int | |
| pytime_mul(_PyTime_t *t, _PyTime_t k) | |
| { | |
| assert(k >= 0); | |
| if (pytime_mul_check_overflow(*t, k)) { | |
| *t = (*t >= 0) ? _PyTime_MAX : _PyTime_MIN; | |
| return -1; | |
| } | |
| else { | |
| *t *= k; | |
| return 0; | |
| } | |
| } | |
| // Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. | |
| static inline _PyTime_t | |
| _PyTime_Mul(_PyTime_t t, _PyTime_t k) | |
| { | |
| (void)pytime_mul(&t, k); | |
| return t; | |
| } | |
| _PyTime_t | |
| _PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div) | |
| { | |
| /* Compute (ticks * mul / div) in two parts to reduce the risk of integer | |
| overflow: compute the integer part, and then the remaining part. | |
| (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div | |
| */ | |
| _PyTime_t intpart, remaining; | |
| intpart = ticks / div; | |
| ticks %= div; | |
| remaining = _PyTime_Mul(ticks, mul) / div; | |
| // intpart * mul + remaining | |
| return _PyTime_Add(_PyTime_Mul(intpart, mul), remaining); | |
| } | |
| time_t | |
| _PyLong_AsTime_t(PyObject *obj) | |
| { | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG | |
| long long val = PyLong_AsLongLong(obj); | |
| #elif SIZEOF_TIME_T <= SIZEOF_LONG | |
| long val = PyLong_AsLong(obj); | |
| #else | |
| # error "unsupported time_t size" | |
| #endif | |
| if (val == -1 && PyErr_Occurred()) { | |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
| pytime_time_t_overflow(); | |
| } | |
| return -1; | |
| } | |
| return (time_t)val; | |
| } | |
| PyObject * | |
| _PyLong_FromTime_t(time_t t) | |
| { | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG | |
| return PyLong_FromLongLong((long long)t); | |
| #elif SIZEOF_TIME_T <= SIZEOF_LONG | |
| return PyLong_FromLong((long)t); | |
| #else | |
| # error "unsupported time_t size" | |
| #endif | |
| } | |
| // Convert _PyTime_t to time_t. | |
| // Return 0 on success. Return -1 and clamp the value on overflow. | |
| static int | |
| _PyTime_AsTime_t(_PyTime_t t, time_t *t2) | |
| { | |
| #if SIZEOF_TIME_T < _SIZEOF_PYTIME_T | |
| if ((_PyTime_t)PY_TIME_T_MAX < t) { | |
| *t2 = PY_TIME_T_MAX; | |
| return -1; | |
| } | |
| if (t < (_PyTime_t)PY_TIME_T_MIN) { | |
| *t2 = PY_TIME_T_MIN; | |
| return -1; | |
| } | |
| #endif | |
| *t2 = (time_t)t; | |
| return 0; | |
| } | |
| #ifdef MS_WINDOWS | |
| // Convert _PyTime_t to long. | |
| // Return 0 on success. Return -1 and clamp the value on overflow. | |
| static int | |
| _PyTime_AsLong(_PyTime_t t, long *t2) | |
| { | |
| #if SIZEOF_LONG < _SIZEOF_PYTIME_T | |
| if ((_PyTime_t)LONG_MAX < t) { | |
| *t2 = LONG_MAX; | |
| return -1; | |
| } | |
| if (t < (_PyTime_t)LONG_MIN) { | |
| *t2 = LONG_MIN; | |
| return -1; | |
| } | |
| #endif | |
| *t2 = (long)t; | |
| return 0; | |
| } | |
| #endif | |
| /* Round to nearest with ties going to nearest even integer | |
| (_PyTime_ROUND_HALF_EVEN) */ | |
| static double | |
| pytime_round_half_even(double x) | |
| { | |
| double rounded = round(x); | |
| if (fabs(x-rounded) == 0.5) { | |
| /* halfway case: round to even */ | |
| rounded = 2.0 * round(x / 2.0); | |
| } | |
| return rounded; | |
| } | |
| static double | |
| pytime_round(double x, _PyTime_round_t round) | |
| { | |
| /* volatile avoids optimization changing how numbers are rounded */ | |
| volatile double d; | |
| d = x; | |
| if (round == _PyTime_ROUND_HALF_EVEN) { | |
| d = pytime_round_half_even(d); | |
| } | |
| else if (round == _PyTime_ROUND_CEILING) { | |
| d = ceil(d); | |
| } | |
| else if (round == _PyTime_ROUND_FLOOR) { | |
| d = floor(d); | |
| } | |
| else { | |
| assert(round == _PyTime_ROUND_UP); | |
| d = (d >= 0.0) ? ceil(d) : floor(d); | |
| } | |
| return d; | |
| } | |
| static int | |
| pytime_double_to_denominator(double d, time_t *sec, long *numerator, | |
| long idenominator, _PyTime_round_t round) | |
| { | |
| double denominator = (double)idenominator; | |
| double intpart; | |
| /* volatile avoids optimization changing how numbers are rounded */ | |
| volatile double floatpart; | |
| floatpart = modf(d, &intpart); | |
| floatpart *= denominator; | |
| floatpart = pytime_round(floatpart, round); | |
| if (floatpart >= denominator) { | |
| floatpart -= denominator; | |
| intpart += 1.0; | |
| } | |
| else if (floatpart < 0) { | |
| floatpart += denominator; | |
| intpart -= 1.0; | |
| } | |
| assert(0.0 <= floatpart && floatpart < denominator); | |
| if (!_Py_InIntegralTypeRange(time_t, intpart)) { | |
| pytime_time_t_overflow(); | |
| return -1; | |
| } | |
| *sec = (time_t)intpart; | |
| *numerator = (long)floatpart; | |
| assert(0 <= *numerator && *numerator < idenominator); | |
| return 0; | |
| } | |
| static int | |
| pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator, | |
| long denominator, _PyTime_round_t round) | |
| { | |
| assert(denominator >= 1); | |
| if (PyFloat_Check(obj)) { | |
| double d = PyFloat_AsDouble(obj); | |
| if (Py_IS_NAN(d)) { | |
| *numerator = 0; | |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | |
| return -1; | |
| } | |
| return pytime_double_to_denominator(d, sec, numerator, | |
| denominator, round); | |
| } | |
| else { | |
| *sec = _PyLong_AsTime_t(obj); | |
| *numerator = 0; | |
| if (*sec == (time_t)-1 && PyErr_Occurred()) { | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| } | |
| int | |
| _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) | |
| { | |
| if (PyFloat_Check(obj)) { | |
| double intpart; | |
| /* volatile avoids optimization changing how numbers are rounded */ | |
| volatile double d; | |
| d = PyFloat_AsDouble(obj); | |
| if (Py_IS_NAN(d)) { | |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | |
| return -1; | |
| } | |
| d = pytime_round(d, round); | |
| (void)modf(d, &intpart); | |
| if (!_Py_InIntegralTypeRange(time_t, intpart)) { | |
| pytime_time_t_overflow(); | |
| return -1; | |
| } | |
| *sec = (time_t)intpart; | |
| return 0; | |
| } | |
| else { | |
| *sec = _PyLong_AsTime_t(obj); | |
| if (*sec == (time_t)-1 && PyErr_Occurred()) { | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| } | |
| int | |
| _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, | |
| _PyTime_round_t round) | |
| { | |
| return pytime_object_to_denominator(obj, sec, nsec, SEC_TO_NS, round); | |
| } | |
| int | |
| _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, | |
| _PyTime_round_t round) | |
| { | |
| return pytime_object_to_denominator(obj, sec, usec, SEC_TO_US, round); | |
| } | |
| _PyTime_t | |
| _PyTime_FromSeconds(int seconds) | |
| { | |
| /* ensure that integer overflow cannot happen, int type should have 32 | |
| bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_NS takes 30 | |
| bits). */ | |
| static_assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS, "_PyTime_t overflow"); | |
| static_assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS, "_PyTime_t underflow"); | |
| _PyTime_t t = (_PyTime_t)seconds; | |
| assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS) | |
| || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS)); | |
| t *= SEC_TO_NS; | |
| return pytime_from_nanoseconds(t); | |
| } | |
| _PyTime_t | |
| _PyTime_FromNanoseconds(_PyTime_t ns) | |
| { | |
| return pytime_from_nanoseconds(ns); | |
| } | |
| _PyTime_t | |
| _PyTime_FromMicrosecondsClamp(_PyTime_t us) | |
| { | |
| _PyTime_t ns = _PyTime_Mul(us, US_TO_NS); | |
| return pytime_from_nanoseconds(ns); | |
| } | |
| int | |
| _PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj) | |
| { | |
| if (!PyLong_Check(obj)) { | |
| PyErr_Format(PyExc_TypeError, "expect int, got %s", | |
| Py_TYPE(obj)->tp_name); | |
| return -1; | |
| } | |
| static_assert(sizeof(long long) == sizeof(_PyTime_t), | |
| "_PyTime_t is not long long"); | |
| long long nsec = PyLong_AsLongLong(obj); | |
| if (nsec == -1 && PyErr_Occurred()) { | |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
| pytime_overflow(); | |
| } | |
| return -1; | |
| } | |
| _PyTime_t t = (_PyTime_t)nsec; | |
| *tp = pytime_from_nanoseconds(t); | |
| return 0; | |
| } | |
| #ifdef HAVE_CLOCK_GETTIME | |
| static int | |
| pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise_exc) | |
| { | |
| _PyTime_t t, tv_nsec; | |
| static_assert(sizeof(ts->tv_sec) <= sizeof(_PyTime_t), | |
| "timespec.tv_sec is larger than _PyTime_t"); | |
| t = (_PyTime_t)ts->tv_sec; | |
| int res1 = pytime_mul(&t, SEC_TO_NS); | |
| tv_nsec = ts->tv_nsec; | |
| int res2 = pytime_add(&t, tv_nsec); | |
| *tp = pytime_from_nanoseconds(t); | |
| if (raise_exc && (res1 < 0 || res2 < 0)) { | |
| pytime_overflow(); | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| int | |
| _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts) | |
| { | |
| return pytime_fromtimespec(tp, ts, 1); | |
| } | |
| #endif | |
| #ifndef MS_WINDOWS | |
| static int | |
| pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise_exc) | |
| { | |
| static_assert(sizeof(tv->tv_sec) <= sizeof(_PyTime_t), | |
| "timeval.tv_sec is larger than _PyTime_t"); | |
| _PyTime_t t = (_PyTime_t)tv->tv_sec; | |
| int res1 = pytime_mul(&t, SEC_TO_NS); | |
| _PyTime_t usec = (_PyTime_t)tv->tv_usec * US_TO_NS; | |
| int res2 = pytime_add(&t, usec); | |
| *tp = pytime_from_nanoseconds(t); | |
| if (raise_exc && (res1 < 0 || res2 < 0)) { | |
| pytime_overflow(); | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| int | |
| _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv) | |
| { | |
| return pytime_fromtimeval(tp, tv, 1); | |
| } | |
| #endif | |
| static int | |
| pytime_from_double(_PyTime_t *tp, double value, _PyTime_round_t round, | |
| long unit_to_ns) | |
| { | |
| /* volatile avoids optimization changing how numbers are rounded */ | |
| volatile double d; | |
| /* convert to a number of nanoseconds */ | |
| d = value; | |
| d *= (double)unit_to_ns; | |
| d = pytime_round(d, round); | |
| if (!_Py_InIntegralTypeRange(_PyTime_t, d)) { | |
| pytime_overflow(); | |
| return -1; | |
| } | |
| _PyTime_t ns = (_PyTime_t)d; | |
| *tp = pytime_from_nanoseconds(ns); | |
| return 0; | |
| } | |
| static int | |
| pytime_from_object(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round, | |
| long unit_to_ns) | |
| { | |
| if (PyFloat_Check(obj)) { | |
| double d; | |
| d = PyFloat_AsDouble(obj); | |
| if (Py_IS_NAN(d)) { | |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | |
| return -1; | |
| } | |
| return pytime_from_double(tp, d, round, unit_to_ns); | |
| } | |
| else { | |
| long long sec = PyLong_AsLongLong(obj); | |
| if (sec == -1 && PyErr_Occurred()) { | |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
| pytime_overflow(); | |
| } | |
| return -1; | |
| } | |
| static_assert(sizeof(long long) <= sizeof(_PyTime_t), | |
| "_PyTime_t is smaller than long long"); | |
| _PyTime_t ns = (_PyTime_t)sec; | |
| if (pytime_mul(&ns, unit_to_ns) < 0) { | |
| pytime_overflow(); | |
| return -1; | |
| } | |
| *tp = pytime_from_nanoseconds(ns); | |
| return 0; | |
| } | |
| } | |
| int | |
| _PyTime_FromSecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round) | |
| { | |
| return pytime_from_object(tp, obj, round, SEC_TO_NS); | |
| } | |
| int | |
| _PyTime_FromMillisecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round) | |
| { | |
| return pytime_from_object(tp, obj, round, MS_TO_NS); | |
| } | |
| double | |
| _PyTime_AsSecondsDouble(_PyTime_t t) | |
| { | |
| /* volatile avoids optimization changing how numbers are rounded */ | |
| volatile double d; | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| if (ns % SEC_TO_NS == 0) { | |
| /* Divide using integers to avoid rounding issues on the integer part. | |
| 1e-9 cannot be stored exactly in IEEE 64-bit. */ | |
| _PyTime_t secs = ns / SEC_TO_NS; | |
| d = (double)secs; | |
| } | |
| else { | |
| d = (double)ns; | |
| d /= 1e9; | |
| } | |
| return d; | |
| } | |
| PyObject * | |
| _PyTime_AsNanosecondsObject(_PyTime_t t) | |
| { | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| static_assert(sizeof(long long) >= sizeof(_PyTime_t), | |
| "_PyTime_t is larger than long long"); | |
| return PyLong_FromLongLong((long long)ns); | |
| } | |
| static _PyTime_t | |
| pytime_divide_round_up(const _PyTime_t t, const _PyTime_t k) | |
| { | |
| assert(k > 1); | |
| if (t >= 0) { | |
| // Don't use (t + k - 1) / k to avoid integer overflow | |
| // if t is equal to _PyTime_MAX | |
| _PyTime_t q = t / k; | |
| if (t % k) { | |
| q += 1; | |
| } | |
| return q; | |
| } | |
| else { | |
| // Don't use (t - (k - 1)) / k to avoid integer overflow | |
| // if t is equals to _PyTime_MIN. | |
| _PyTime_t q = t / k; | |
| if (t % k) { | |
| q -= 1; | |
| } | |
| return q; | |
| } | |
| } | |
| static _PyTime_t | |
| pytime_divide(const _PyTime_t t, const _PyTime_t k, | |
| const _PyTime_round_t round) | |
| { | |
| assert(k > 1); | |
| if (round == _PyTime_ROUND_HALF_EVEN) { | |
| _PyTime_t x = t / k; | |
| _PyTime_t r = t % k; | |
| _PyTime_t abs_r = Py_ABS(r); | |
| if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { | |
| if (t >= 0) { | |
| x++; | |
| } | |
| else { | |
| x--; | |
| } | |
| } | |
| return x; | |
| } | |
| else if (round == _PyTime_ROUND_CEILING) { | |
| if (t >= 0) { | |
| return pytime_divide_round_up(t, k); | |
| } | |
| else { | |
| return t / k; | |
| } | |
| } | |
| else if (round == _PyTime_ROUND_FLOOR){ | |
| if (t >= 0) { | |
| return t / k; | |
| } | |
| else { | |
| return pytime_divide_round_up(t, k); | |
| } | |
| } | |
| else { | |
| assert(round == _PyTime_ROUND_UP); | |
| return pytime_divide_round_up(t, k); | |
| } | |
| } | |
| // Compute (t / k, t % k) in (pq, pr). | |
| // Make sure that 0 <= pr < k. | |
| // Return 0 on success. | |
| // Return -1 on underflow and store (_PyTime_MIN, 0) in (pq, pr). | |
| static int | |
| pytime_divmod(const _PyTime_t t, const _PyTime_t k, | |
| _PyTime_t *pq, _PyTime_t *pr) | |
| { | |
| assert(k > 1); | |
| _PyTime_t q = t / k; | |
| _PyTime_t r = t % k; | |
| if (r < 0) { | |
| if (q == _PyTime_MIN) { | |
| *pq = _PyTime_MIN; | |
| *pr = 0; | |
| return -1; | |
| } | |
| r += k; | |
| q -= 1; | |
| } | |
| assert(0 <= r && r < k); | |
| *pq = q; | |
| *pr = r; | |
| return 0; | |
| } | |
| _PyTime_t | |
| _PyTime_AsNanoseconds(_PyTime_t t) | |
| { | |
| return pytime_as_nanoseconds(t); | |
| } | |
| #ifdef MS_WINDOWS | |
| _PyTime_t | |
| _PyTime_As100Nanoseconds(_PyTime_t t, _PyTime_round_t round) | |
| { | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| return pytime_divide(ns, NS_TO_100NS, round); | |
| } | |
| #endif | |
| _PyTime_t | |
| _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) | |
| { | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| return pytime_divide(ns, NS_TO_US, round); | |
| } | |
| _PyTime_t | |
| _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) | |
| { | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| return pytime_divide(ns, NS_TO_MS, round); | |
| } | |
| static int | |
| pytime_as_timeval(_PyTime_t t, _PyTime_t *ptv_sec, int *ptv_usec, | |
| _PyTime_round_t round) | |
| { | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| _PyTime_t us = pytime_divide(ns, US_TO_NS, round); | |
| _PyTime_t tv_sec, tv_usec; | |
| int res = pytime_divmod(us, SEC_TO_US, &tv_sec, &tv_usec); | |
| *ptv_sec = tv_sec; | |
| *ptv_usec = (int)tv_usec; | |
| return res; | |
| } | |
| static int | |
| pytime_as_timeval_struct(_PyTime_t t, struct timeval *tv, | |
| _PyTime_round_t round, int raise_exc) | |
| { | |
| _PyTime_t tv_sec; | |
| int tv_usec; | |
| int res = pytime_as_timeval(t, &tv_sec, &tv_usec, round); | |
| int res2; | |
| #ifdef MS_WINDOWS | |
| // On Windows, timeval.tv_sec type is long | |
| res2 = _PyTime_AsLong(tv_sec, &tv->tv_sec); | |
| #else | |
| res2 = _PyTime_AsTime_t(tv_sec, &tv->tv_sec); | |
| #endif | |
| if (res2 < 0) { | |
| tv_usec = 0; | |
| } | |
| tv->tv_usec = tv_usec; | |
| if (raise_exc && (res < 0 || res2 < 0)) { | |
| pytime_time_t_overflow(); | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| int | |
| _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) | |
| { | |
| return pytime_as_timeval_struct(t, tv, round, 1); | |
| } | |
| void | |
| _PyTime_AsTimeval_clamp(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) | |
| { | |
| (void)pytime_as_timeval_struct(t, tv, round, 0); | |
| } | |
| int | |
| _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, | |
| _PyTime_round_t round) | |
| { | |
| _PyTime_t secs; | |
| if (pytime_as_timeval(t, &secs, us, round) < 0) { | |
| pytime_time_t_overflow(); | |
| return -1; | |
| } | |
| if (_PyTime_AsTime_t(secs, p_secs) < 0) { | |
| pytime_time_t_overflow(); | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) | |
| static int | |
| pytime_as_timespec(_PyTime_t t, struct timespec *ts, int raise_exc) | |
| { | |
| _PyTime_t ns = pytime_as_nanoseconds(t); | |
| _PyTime_t tv_sec, tv_nsec; | |
| int res = pytime_divmod(ns, SEC_TO_NS, &tv_sec, &tv_nsec); | |
| int res2 = _PyTime_AsTime_t(tv_sec, &ts->tv_sec); | |
| if (res2 < 0) { | |
| tv_nsec = 0; | |
| } | |
| ts->tv_nsec = tv_nsec; | |
| if (raise_exc && (res < 0 || res2 < 0)) { | |
| pytime_time_t_overflow(); | |
| return -1; | |
| } | |
| return 0; | |
| } | |
| void | |
| _PyTime_AsTimespec_clamp(_PyTime_t t, struct timespec *ts) | |
| { | |
| (void)pytime_as_timespec(t, ts, 0); | |
| } | |
| int | |
| _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) | |
| { | |
| return pytime_as_timespec(t, ts, 1); | |
| } | |
| #endif | |
| static int | |
| py_get_system_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) | |
| { | |
| assert(info == NULL || raise_exc); | |
| #ifdef MS_WINDOWS | |
| FILETIME system_time; | |
| ULARGE_INTEGER large; | |
| GetSystemTimeAsFileTime(&system_time); | |
| large.u.LowPart = system_time.dwLowDateTime; | |
| large.u.HighPart = system_time.dwHighDateTime; | |
| /* 11,644,473,600,000,000,000: number of nanoseconds between | |
| the 1st january 1601 and the 1st january 1970 (369 years + 89 leap | |
| days). */ | |
| _PyTime_t ns = large.QuadPart * 100 - 11644473600000000000; | |
| *tp = pytime_from_nanoseconds(ns); | |
| if (info) { | |
| DWORD timeAdjustment, timeIncrement; | |
| BOOL isTimeAdjustmentDisabled, ok; | |
| info->implementation = "GetSystemTimeAsFileTime()"; | |
| info->monotonic = 0; | |
| ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, | |
| &isTimeAdjustmentDisabled); | |
| if (!ok) { | |
| PyErr_SetFromWindowsErr(0); | |
| return -1; | |
| } | |
| info->resolution = timeIncrement * 1e-7; | |
| info->adjustable = 1; | |
| } | |
| #else /* MS_WINDOWS */ | |
| int err; | |
| #if defined(HAVE_CLOCK_GETTIME) | |
| struct timespec ts; | |
| #endif | |
| #if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__) | |
| struct timeval tv; | |
| #endif | |
| #ifdef HAVE_CLOCK_GETTIME | |
| #ifdef HAVE_CLOCK_GETTIME_RUNTIME | |
| if (HAVE_CLOCK_GETTIME_RUNTIME) { | |
| #endif | |
| err = clock_gettime(CLOCK_REALTIME, &ts); | |
| if (err) { | |
| if (raise_exc) { | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| } | |
| return -1; | |
| } | |
| if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { | |
| return -1; | |
| } | |
| if (info) { | |
| struct timespec res; | |
| info->implementation = "clock_gettime(CLOCK_REALTIME)"; | |
| info->monotonic = 0; | |
| info->adjustable = 1; | |
| if (clock_getres(CLOCK_REALTIME, &res) == 0) { | |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; | |
| } | |
| else { | |
| info->resolution = 1e-9; | |
| } | |
| } | |
| #ifdef HAVE_CLOCK_GETTIME_RUNTIME | |
| } | |
| else { | |
| #endif | |
| #endif | |
| #if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME) | |
| /* test gettimeofday() */ | |
| err = gettimeofday(&tv, (struct timezone *)NULL); | |
| if (err) { | |
| if (raise_exc) { | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| } | |
| return -1; | |
| } | |
| if (pytime_fromtimeval(tp, &tv, raise_exc) < 0) { | |
| return -1; | |
| } | |
| if (info) { | |
| info->implementation = "gettimeofday()"; | |
| info->resolution = 1e-6; | |
| info->monotonic = 0; | |
| info->adjustable = 1; | |
| } | |
| #if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME) | |
| } /* end of availibity block */ | |
| #endif | |
| #endif /* !HAVE_CLOCK_GETTIME */ | |
| #endif /* !MS_WINDOWS */ | |
| return 0; | |
| } | |
| _PyTime_t | |
| _PyTime_GetSystemClock(void) | |
| { | |
| _PyTime_t t; | |
| if (py_get_system_clock(&t, NULL, 0) < 0) { | |
| // If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails: | |
| // silently ignore the failure and return 0. | |
| t = 0; | |
| } | |
| return t; | |
| } | |
| int | |
| _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) | |
| { | |
| return py_get_system_clock(t, info, 1); | |
| } | |
| #ifdef __APPLE__ | |
| static int | |
| py_mach_timebase_info(_PyTime_t *pnumer, _PyTime_t *pdenom, int raise) | |
| { | |
| static mach_timebase_info_data_t timebase; | |
| /* According to the Technical Q&A QA1398, mach_timebase_info() cannot | |
| fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ | |
| (void)mach_timebase_info(&timebase); | |
| /* Sanity check: should never occur in practice */ | |
| if (timebase.numer < 1 || timebase.denom < 1) { | |
| if (raise) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "invalid mach_timebase_info"); | |
| } | |
| return -1; | |
| } | |
| /* Check that timebase.numer and timebase.denom can be casted to | |
| _PyTime_t. In practice, timebase uses uint32_t, so casting cannot | |
| overflow. At the end, only make sure that the type is uint32_t | |
| (_PyTime_t is 64-bit long). */ | |
| static_assert(sizeof(timebase.numer) <= sizeof(_PyTime_t), | |
| "timebase.numer is larger than _PyTime_t"); | |
| static_assert(sizeof(timebase.denom) <= sizeof(_PyTime_t), | |
| "timebase.denom is larger than _PyTime_t"); | |
| /* Make sure that _PyTime_MulDiv(ticks, timebase_numer, timebase_denom) | |
| cannot overflow. | |
| Known time bases: | |
| * (1, 1) on Intel | |
| * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC | |
| None of these time bases can overflow with 64-bit _PyTime_t, but | |
| check for overflow, just in case. */ | |
| if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) { | |
| if (raise) { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "mach_timebase_info is too large"); | |
| } | |
| return -1; | |
| } | |
| *pnumer = (_PyTime_t)timebase.numer; | |
| *pdenom = (_PyTime_t)timebase.denom; | |
| return 0; | |
| } | |
| #endif | |
| static int | |
| py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) | |
| { | |
| assert(info == NULL || raise_exc); | |
| #if defined(MS_WINDOWS) | |
| ULONGLONG ticks = GetTickCount64(); | |
| static_assert(sizeof(ticks) <= sizeof(_PyTime_t), | |
| "ULONGLONG is larger than _PyTime_t"); | |
| _PyTime_t t; | |
| if (ticks <= (ULONGLONG)_PyTime_MAX) { | |
| t = (_PyTime_t)ticks; | |
| } | |
| else { | |
| // GetTickCount64() maximum is larger than _PyTime_t maximum: | |
| // ULONGLONG is unsigned, whereas _PyTime_t is signed. | |
| t = _PyTime_MAX; | |
| } | |
| int res = pytime_mul(&t, MS_TO_NS); | |
| *tp = t; | |
| if (raise_exc && res < 0) { | |
| pytime_overflow(); | |
| return -1; | |
| } | |
| if (info) { | |
| DWORD timeAdjustment, timeIncrement; | |
| BOOL isTimeAdjustmentDisabled, ok; | |
| info->implementation = "GetTickCount64()"; | |
| info->monotonic = 1; | |
| ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, | |
| &isTimeAdjustmentDisabled); | |
| if (!ok) { | |
| PyErr_SetFromWindowsErr(0); | |
| return -1; | |
| } | |
| info->resolution = timeIncrement * 1e-7; | |
| info->adjustable = 0; | |
| } | |
| #elif defined(__APPLE__) | |
| static _PyTime_t timebase_numer = 0; | |
| static _PyTime_t timebase_denom = 0; | |
| if (timebase_denom == 0) { | |
| if (py_mach_timebase_info(&timebase_numer, &timebase_denom, raise_exc) < 0) { | |
| return -1; | |
| } | |
| } | |
| if (info) { | |
| info->implementation = "mach_absolute_time()"; | |
| info->resolution = (double)timebase_numer / (double)timebase_denom * 1e-9; | |
| info->monotonic = 1; | |
| info->adjustable = 0; | |
| } | |
| uint64_t uticks = mach_absolute_time(); | |
| // unsigned => signed | |
| assert(uticks <= (uint64_t)_PyTime_MAX); | |
| _PyTime_t ticks = (_PyTime_t)uticks; | |
| _PyTime_t ns = _PyTime_MulDiv(ticks, timebase_numer, timebase_denom); | |
| *tp = pytime_from_nanoseconds(ns); | |
| #elif defined(__hpux) | |
| hrtime_t time; | |
| time = gethrtime(); | |
| if (time == -1) { | |
| if (raise_exc) { | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| } | |
| return -1; | |
| } | |
| *tp = pytime_from_nanoseconds(time); | |
| if (info) { | |
| info->implementation = "gethrtime()"; | |
| info->resolution = 1e-9; | |
| info->monotonic = 1; | |
| info->adjustable = 0; | |
| } | |
| #else | |
| #ifdef CLOCK_HIGHRES | |
| const clockid_t clk_id = CLOCK_HIGHRES; | |
| const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; | |
| #else | |
| const clockid_t clk_id = CLOCK_MONOTONIC; | |
| const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; | |
| #endif | |
| struct timespec ts; | |
| if (clock_gettime(clk_id, &ts) != 0) { | |
| if (raise_exc) { | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| return -1; | |
| } | |
| return -1; | |
| } | |
| if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { | |
| return -1; | |
| } | |
| if (info) { | |
| info->monotonic = 1; | |
| info->implementation = implementation; | |
| info->adjustable = 0; | |
| struct timespec res; | |
| if (clock_getres(clk_id, &res) != 0) { | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| return -1; | |
| } | |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; | |
| } | |
| #endif | |
| return 0; | |
| } | |
| _PyTime_t | |
| _PyTime_GetMonotonicClock(void) | |
| { | |
| _PyTime_t t; | |
| if (py_get_monotonic_clock(&t, NULL, 0) < 0) { | |
| // If mach_timebase_info(), clock_gettime() or gethrtime() fails: | |
| // silently ignore the failure and return 0. | |
| t = 0; | |
| } | |
| return t; | |
| } | |
| int | |
| _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) | |
| { | |
| return py_get_monotonic_clock(tp, info, 1); | |
| } | |
| #ifdef MS_WINDOWS | |
| static int | |
| py_win_perf_counter_frequency(LONGLONG *pfrequency, int raise) | |
| { | |
| LONGLONG frequency; | |
| LARGE_INTEGER freq; | |
| // Since Windows XP, the function cannot fail. | |
| (void)QueryPerformanceFrequency(&freq); | |
| frequency = freq.QuadPart; | |
| // Since Windows XP, frequency cannot be zero. | |
| assert(frequency >= 1); | |
| /* Make also sure that (ticks * SEC_TO_NS) cannot overflow in | |
| _PyTime_MulDiv(), with ticks < frequency. | |
| Known QueryPerformanceFrequency() values: | |
| * 10,000,000 (10 MHz): 100 ns resolution | |
| * 3,579,545 Hz (3.6 MHz): 279 ns resolution | |
| None of these frequencies can overflow with 64-bit _PyTime_t, but | |
| check for integer overflow just in case. */ | |
| if (frequency > _PyTime_MAX / SEC_TO_NS) { | |
| if (raise) { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "QueryPerformanceFrequency is too large"); | |
| } | |
| return -1; | |
| } | |
| *pfrequency = frequency; | |
| return 0; | |
| } | |
| static int | |
| py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) | |
| { | |
| assert(info == NULL || raise_exc); | |
| static LONGLONG frequency = 0; | |
| if (frequency == 0) { | |
| if (py_win_perf_counter_frequency(&frequency, raise_exc) < 0) { | |
| return -1; | |
| } | |
| } | |
| if (info) { | |
| info->implementation = "QueryPerformanceCounter()"; | |
| info->resolution = 1.0 / (double)frequency; | |
| info->monotonic = 1; | |
| info->adjustable = 0; | |
| } | |
| LARGE_INTEGER now; | |
| QueryPerformanceCounter(&now); | |
| LONGLONG ticksll = now.QuadPart; | |
| /* Make sure that casting LONGLONG to _PyTime_t cannot overflow, | |
| both types are signed */ | |
| _PyTime_t ticks; | |
| static_assert(sizeof(ticksll) <= sizeof(ticks), | |
| "LONGLONG is larger than _PyTime_t"); | |
| ticks = (_PyTime_t)ticksll; | |
| _PyTime_t ns = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency); | |
| *tp = pytime_from_nanoseconds(ns); | |
| return 0; | |
| } | |
| #endif // MS_WINDOWS | |
| int | |
| _PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info) | |
| { | |
| #ifdef MS_WINDOWS | |
| return py_get_win_perf_counter(t, info, 1); | |
| #else | |
| return _PyTime_GetMonotonicClockWithInfo(t, info); | |
| #endif | |
| } | |
| _PyTime_t | |
| _PyTime_GetPerfCounter(void) | |
| { | |
| _PyTime_t t; | |
| int res; | |
| #ifdef MS_WINDOWS | |
| res = py_get_win_perf_counter(&t, NULL, 0); | |
| #else | |
| res = py_get_monotonic_clock(&t, NULL, 0); | |
| #endif | |
| if (res < 0) { | |
| // If py_win_perf_counter_frequency() or py_get_monotonic_clock() | |
| // fails: silently ignore the failure and return 0. | |
| t = 0; | |
| } | |
| return t; | |
| } | |
| int | |
| _PyTime_localtime(time_t t, struct tm *tm) | |
| { | |
| #ifdef MS_WINDOWS | |
| int error; | |
| error = localtime_s(tm, &t); | |
| if (error != 0) { | |
| errno = error; | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| return -1; | |
| } | |
| return 0; | |
| #else /* !MS_WINDOWS */ | |
| #if defined(_AIX) && (SIZEOF_TIME_T < 8) | |
| /* bpo-34373: AIX does not return NULL if t is too small or too large */ | |
| if (t < -2145916800 /* 1902-01-01 */ | |
| || t > 2145916800 /* 2038-01-01 */) { | |
| errno = EINVAL; | |
| PyErr_SetString(PyExc_OverflowError, | |
| "localtime argument out of range"); | |
| return -1; | |
| } | |
| #endif | |
| errno = 0; | |
| if (localtime_r(&t, tm) == NULL) { | |
| if (errno == 0) { | |
| errno = EINVAL; | |
| } | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| return -1; | |
| } | |
| return 0; | |
| #endif /* MS_WINDOWS */ | |
| } | |
| int | |
| _PyTime_gmtime(time_t t, struct tm *tm) | |
| { | |
| #ifdef MS_WINDOWS | |
| int error; | |
| error = gmtime_s(tm, &t); | |
| if (error != 0) { | |
| errno = error; | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| return -1; | |
| } | |
| return 0; | |
| #else /* !MS_WINDOWS */ | |
| if (gmtime_r(&t, tm) == NULL) { | |
| #ifdef EINVAL | |
| if (errno == 0) { | |
| errno = EINVAL; | |
| } | |
| #endif | |
| PyErr_SetFromErrno(PyExc_OSError); | |
| return -1; | |
| } | |
| return 0; | |
| #endif /* MS_WINDOWS */ | |
| } | |
| _PyTime_t | |
| _PyDeadline_Init(_PyTime_t timeout) | |
| { | |
| _PyTime_t now = _PyTime_GetMonotonicClock(); | |
| return _PyTime_Add(now, timeout); | |
| } | |
| _PyTime_t | |
| _PyDeadline_Get(_PyTime_t deadline) | |
| { | |
| _PyTime_t now = _PyTime_GetMonotonicClock(); | |
| return deadline - now; | |
| } |